Simplified Collapse Analysis of Structures

using the Extended Distinct Element Method with Finite Element Mapping

有限要素マッピングを拡張固別要素法に応用した構造物の破壊解析手法の開発

Introduction

Collapse analysis of buildings is invaluable in the field of Urban Disaster Reduction．There exists various scientific methods for collapse analysis，however，these methods are usually complicated and time consuming to be used in actual practice．There is a need for a numerical tool which is simple，accurate and computationally less expensive for practical seismic vulnerability assessment of buildings．The Extended Distinct Element Method has been observed to be a simple as well as an efficient tool for modelling collapse of structures，but it has some limitations．This study is carried out to tackle these limitations．

1．The Extended Distinct Element Method（EDEM）

2．Combined Implicit－Explicit Analysis

4．Results and discussion

Linear Static Analysis
Simple cantilever bending
As stiffness matrix is exactly the same as FEM stiffness matrix it shows energy convergence and deflection error reduction with mesh size reduction
Optimum balance between error and computation is required This modification to EDEM has（i）enabled creation of stiffness matrix（implicit dynamics，larger time step）（ii）improved the accuracy（iii）Poison ratio is considered
No．of Elements

5．Future work

The numerical modelling of anisotropic nonlinear material like concrete and masonry needs to performed．
Validation with experimental data．Extension to 3D．Implementation of parallel computation for higher computation efficiency．Creation of a user interface that can be used for practical usage．Parametric study of building collapse．Seismic vulnerability assessment of existing buildings．

